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CHAPTER 1

Installation

1.1 Latest release

Not yet released. Eventually hs-to-coq will be available on hackage.

1.2 Development version

The source code for the development version is available via github. This repository includes everything that you need.

$ git clone https://github.com/antalsz/hs-to-coq.git
$ cd hs-to-coq

The recommended way of building hs-to-coq is to use the stack tool. If you have not setup stack before

$ stack setup

To build hs-to-coq

$ stack build

To compile hs-to-coq from scratch, we recommend GHC 8.4.1.

1.3 Coq Requirements

This repository comes with a Coq version of the Haskell base library, used by the output of hs-to-coq.

You must have Coq 8.8.1 and ssreflect to build the base library. You can install these tools using opam.

$ opam repo add coq-released https://coq.inria.fr/opam/released
$ opam update
$ opam install coq.8.8.1 coq-mathcomp-ssreflect.1.6.4

1
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Once installed, you can build the base library from the project root with

$ make -C base

Th directory base-thy contains auxillary definitions and lemmas, such as lawful type-class instances. You can build
these with

$ make -C base-thy

1.4 Test your hs-to-coq installation

To test whether your hs-to-coq installation is successful, you can try to compile the examples that are distributed with
the tool.

Some examples use git submodules, so run

$ git submodule update --init --recursive

once first to download all dependencies.

Then, compile all of the examples with

$ cd examples
$ ./boot.sh

The flag noclean will recompile everything without first deleting the old versions.

$ ./boot.sh noclean

The flag quick is like the above but doesn’t run the tests.

$ ./boot.sh quick

1.5 Troubleshooting

1. lndir: command not found

On Mac OSX, you may need to install XQuartz and imake to run examples/boot.sh.

If you get the error message while trying to run ./boot.sh:

> lndir: command not found

The following commands will install XQuartz and imake through brew:

$ brew cask install xquartz
$ brew install imake

Depending on your brew cask setup, you may also need to update your $PATH variable.

$ export PATH=$PATH:/usr/X11/bin >> ~/.bash_profile

2. git submodule update –init –recursive gives error fatal: Needed a single revision

2 Chapter 1. Installation
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Try removing the submodule directory that the error was triggered on, and run the command again. (i.e. If the error
was on examples/wc/wc, a rm -rf examples/wc/wc followed by a git submodule update –init –recursive will do the
trick.

1.5. Troubleshooting 3
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CHAPTER 2

Quickstart

The easiest way to see how to use hs-to-coq is to look at the Makefiles in each of the subdirectories in the examples
subdirectory of the repository.

2.1 Translating a single Haskell file

You can run hs-to-coq on a single Haskell module (called Main.hs) with the following command.

$ stack exec -- hs-to-coq -e hs-to-coq/base/edits Main.hs --iface-dir hs-to-coq/base -
→˓o .

Adjust the paths to the edits and base files in the hs-to-coq repository accordingly. This invocation uses the
following commandline options.

-e <editfile>

The -e command line argument tells hs-to-coq to use edits from the specified edit file, and can be used multiple
times. In almost every case, you’ll want to include -e hs-to-coq/base/edits, the edit file distributed with the
base library.

--iface-dir <dir>

The --iface-dir command line argument tells hs-to-coq where to find the interface files for the translated files
in the base library. These interface files contain extra information about produced during translation and are needed
to translate any modules that use the base libraries.

-o <dir>

The -o argument specifies the output directory for the generated .v files. In this case, it is the current directory.

An example translated in this way is simple. Check out the Makefile in the examples/simple subdirectory to
see how hs-to-coq is invoked with these arguments.

5
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2.2 Local Edit files

Often, a particular file will require its own set of edits. These edits can be provided with additional uses of the -e
<editfile> command line argument.

An example that uses a local edit file is intervals, as described in Joachim Breitner’s blog post.

Any number of edit files may be provided to hs-to-coq.

2.3 Additional Coq definitions

Sometimes an hs-to-coq translation requires the addition of Coq definitions to the output. These definitions can be
specified via the preamble and midamble arguments.

-p <preamble-file>

Inserts the Coq definitions from the specified file at the beginning of the output.

For example, the rle example uses a preamble to add additional imports to the output.

-m <midamble-file>

Inserts the Coq definitions from the specified file in the output after the type definitions but before any of the translated
code or instance declarations.

Only one preamble and one midamble can be provided to hs-to-coq.

2.4 Strict vs. permissive translation

What should hs-to-coq do when it can’t translate a definition? By default, it will throw an error and stop translating.
But you can make this behavior more permissive if you want.

--strict

-S

The default option: any definition that can’t be translated will stop the whole development process.

--permissive

-P

In permissive mode, hs-to-coq will either attempt to axiomatize or skip failing definitions when possible. This is
particularly useful during development.

2.5 Proofs

Once you have translated your module with hs-to-coq, you will want to prove stuff about it. However, if your
module includes definitions from base, you need to set up a _CoqProject file so that coq can find all of the
necessary definitions.

The Makefile in the rle example demonstrates how this file can be constructed automatically. The proofs in this
example use a lemma called map_map from the base library.

6 Chapter 2. Quickstart
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2.6 Translating a multi-file project

Larger examples include containers and transformers.

These examples use a Makefile to translate each module in the library individually, using edit files, preambles and
midambles specific to each module. It also includes the addition of manually written Coq files to the library.

For this scale of project, we recommend starting with one of the Makefiles above and editing it to suit your application.

2.7 Avoiding base

hs-to-coq is designed to automatically use definitions from the base library. However, it is sometimes possible to
translate small examples so that they are self contained and only require definitions from Coq’s standard library.

An example project that takes this approach is: https://github.com/mit-plv/riscv-coq

2.6. Translating a multi-file project 7
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CHAPTER 3

Edit Files

The edit files contain declarations that control the output of hs-to-coq on various Haskell files.

3.1 General format of edit files

Edit files are plain text files. Empty lines and lines starting with # are ignored. Otherwise, the files are consist of a
sequence of edits. Most form of edits are exactly one line long, but some edits can span multiple lines, and must be
terminated with a period.

Make sure that your edit file ends with a newline.

3.1.1 Qualified names

A qualified_name is the Coq name with module prefix. Names must always be qualified, because edit files are not
bound to a specific module (even though you may want to have a separate edit for each Haskell module).

Reserved names have an underscore appended and renames (see below) have already been applied.

More details about how hs-to-coq treats see Section Identifiers and Notation.

3.1.2 Gallina expressions

Some edits contain Gallina expressions (i.e. Coq code). The parser is pretty limited. In particular, it does not know
anything about operator precedence or associativity, so add plenty of parentheses!

3.2 Skipping Haskell

Sometimes, hs-to-coq should ignore various Haskell declarations, because they are not translatable, or they are
out-of-scope, or for other reasons.

9
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3.2.1 skip – skip a function, type, or type class instance

Format:

skip qualified_name

Effect: During translation, ignore the declaration of the function, value, type, or type class instance with the given
qualified_name. The name must be the translated Coq name, not the original Haskell name (if those differ).

This does not affect the translation of uses of the given name. This means that you can use other methods, e.g.
a preamble, to make it available.

You can skip type class instances, but as they do not have names in Haskell, you must use the name hs-to-coq
generates for them. The name generation is systematic, but you might want to first attempt the translation and
check the output for the precise name.

To skip data type constructors, see skip constructor; to skip type classes, see skip class; to skip
type class methods, see skip methods. They are not unified here because those effects are more powerful.
You can also skip whole modules with skip module.

Examples:

skip Data.Function.fix_ # Note the mangled name!
skip GHC.Base.String
skip GHC.Real.Fractional
skip Data.Monoid.Show__Last # an instance

3.2.2 skip constructor – skip a constructor of a data type

Format:

skip constructor qualified_name

Effect: During translation, ignore the given data type constructor. Any equation of a function, alternative of a case
statement, or pattern guard that pattern-matches on that constructor is also skipped. List comprehensions that
bind to that constructor become [].

As with skip, this does not affect the translation of uses of the constructor. This means that you must either
make it available in a preamble or elide it with other edits. Additionally, matching against the constructor in do
notation will cause a translation failure.

These skipped constructors are not stored in the generated metadata, so you need to include the skip
constructor edits in all downstream modules.

Examples:

skip constructor Core.Cast
skip constructor Core.Tick
skip constructor Core.Type_
skip constructor Core.Coercion

3.2.3 skip class – skip a type class and all its instances

Format:

skip class qualified_class

Effect:
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Omit the given type class and all its instances.

These skipped classes are not stored in the generated metadata, so you need to include the skip class
edits in all downstream modules.

Examples:

skip class GHC.Base.Alternative
skip class Data.Data.Data

3.2.4 skip method – skip a method

Format:

skip method qualified_class method

Effect: Omit the given method from the its class declaration, and also from all instances.

Examples:

skip method GHC.Base.Monad fail

3.2.5 skip equation – skip one equation of a function definition

Format:

skip equation qualified_function pattern . . .

Effect: Skip the equation of the function definition whose arguments are the specified patterns. Guards are not
considered, only the patterns themselves.

For example, consider the following (silly) function definition:

redundant :: Maybe Bool -> Maybe Bool -> Bool
redundant (Just True) _ = False
redundant (Just False) _ = True
redundant _ _ = True
redundant _ (Just b) = b

The last case is redundant, so Coq will reject this definition. However, we can add the following edit:

skip equation ModuleName.redundant _ (Some b)

And the last case will be deleted on the Coq side:

Definition redundant : option bool -> option bool -> bool :=
fun arg_0__ arg_1__ =>
match arg_0__, arg_1__ with
| Some true, _ => false
| Some false, _ => true
| _, _ => true
end.

Note that you have to use the translated name (Some vs. Just), and most constructor names will be fully
qualified.

Why would you want this? This edit is most useful in tandem with skip constructor (which see). Suppose
we have a function where the final catch-all case can only match skipped constructors, such as

3.2. Skipping Haskell 11
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data T = TranslateMe
| SkipMe

function :: T -> Bool
function TranslateMe = True
function _ = False

Then, on skipping SkipMe, this function’s _ case will be redundant, and Coq would reject it. We can fix this
with

skip equation ModuleName.function _

to translate just the TranslateMe case.

See also skip case pattern for the equivalent edit for case and lambda-case expressions.

Examples:

skip equation ModuleName.redundant _ (Some b)
skip equation Core.hasSomeUnfolding _

3.2.6 skip case pattern – skip one alternative of a case expression

Format:

skip case pattern pattern

Effect: Skip any alternative of a case expression (or a lambda-case expression) which matches against the given
pattern. Guards are not considered, only the pattern itself.

For example, consider the following (silly) function definition:

redundant :: Bool -> Bool
redundant b = not (case b of

True -> False
False -> True
_ -> True)

The last case is redundant, so Coq will reject this definition. However, we can add the following edit:

in ModuleName.redundant skip case pattern _

And the last case will be deleted on the Coq side (reformatted):

Definition redundant : bool -> bool :=
fun b => negb (match b with

| true => false
| false => true
end).

You can use an arbitrary pattern, not simply _; constructor names must be fully qualified and the names used
must be those that appear after renaming.

Why would you want this? This edit is most useful in tandem with skip constructor (which see); see the
discussion in skip equation for a worked example (with a named function).

This edit is unusual in that you very likely want to use it with the in meta-edit to scope its effects to within a
specific definition. However, this isn’t mandatory; if, for some reason, you want to skip every _ in every case,
then skip case pattern _ will do what you want.

12 Chapter 3. Edit Files
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See also skip equation for the equivalent edit for named functions.

Examples:

in ModuleName.redundant skip case pattern _

3.2.7 skip module – skip a module import

Format:

skip module module

Effect: Do not generate an Require statemnt for module.

This is mostly useful during development: hs-to-coq automatically requires the modules of all names it en-
counters, in the beginning of the resulting file. If there are names from modules that you do not intent to translate,
Coq will already abort there. It is more convenient to have it fail when the name is actually encountered, to then
decide how to fix it (e.g. using skip, rename or rewrite).

In the end, all mentions of names in the give module ought to be gone, in which case hs-to-coq would not
generate an Require statement anyways. So in complete formalizations, this edit should not be needed.

Examples:

skip module GHC.Show

3.2.8 axiomatize module – replace all definitions in a module with axioms

Format:

axiomatize module module

Effect: Replaces all definitions in a module with axioms.

This translates type and type class definitions, and then produces axioms for variable bindings and type class
instances which have the translated types. Any types that are redefined are correctly redefined; any bindings
or instances that are skipped don’t have axioms generated. If you want to override the axiomatization for a
single definition and actually translate it, you can use the unaxiomatize definition edit.

The axiomatize module edit is useful if you want to stub out a dependency of a module you are actually
interested in.

See also axiomatize definition.

Examples:

axiomatize module TrieMap

3.2.9 axiomatize original module name – replace all definitions in a module
with axioms, using the pre-renaming module name

Format:

axiomatize original module name module

3.2. Skipping Haskell 13
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Effect: You probably do not need to use this edit; it’s only important when using rename module to merge multiple
modules into one. If you are doing this, however, and wish you could use axiomatize module on some of
the input modules but not others, then axiomatize original module name is the edit for you.

The behavior of axiomatize original module name is the same as that of axiomatize module,
except for how it picks which module to axiomatize. While every other edit operates in terms of the Coq name
after any renamings from the edits have been applied, axiomatize original module name checks the
original, pre-rename module, form of the module name. Most of the time, this would be confusing, and
axiomatize module would be preferable.

However, if you have used rename module to merge two (or more) modules into one, but you only want one
of them (or some other strict subset) to be axiomatized, then axiomatize original module name is
the only way to get this behavior.

Examples:

axiomatize original module name Part1
rename module Part1 Whole
rename module Part2 Whole

3.2.10 axiomatize definition – replace a value definition with an axiom

Format:

axiomatize definition qualified_name

Effect: Replaces a single definition with an axiom.

This takes the name of a value-level definition and, when translating it, translates only the type and generates an
axiom with that type.

See also axiomatize module, and also redefine Axiom for type-level axiomatization.

Examples:

axiomatize definition GHC.Prim.primitiveFunction

3.2.11 unaxiomatize definition – override whole-module axiomatization on a
case-by-case basis

Format:

unaxiomatize definition qualified_name

Effect: Translates a single definition, axiomatize module notwithstanding.

If the module containing the given value-level definition is being axiomatized, then this definition will be trans-
lated in the usual way.

If a definition is both unaxiomatized and skipped, then it will simply be skipped. But please don’t do this
:-)

Examples:

axiomatize module TrieMap
unaxiomatize definition TrieMap.insertTM
unaxiomatize definition TrieMap.deleteTM

14 Chapter 3. Edit Files
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3.3 Adding Coq Commands

3.3.1 add – inject a definition

Format:

add module coq_definition

Effect: Add a Coq definition to module. The definition can be a Definition, a Fixpoint, an Inductive, an
Instance, an Axiom, or a Theorem (with a Proof).

The name in the definition should be fully qualified. (If it is not, some dependency calculations inside
hs-to-coq might go wrong – but this is not always critical.)

Our Coq parser is dramatically incomplete, and you may need to add parentheses or pick a simpler syntactic
representation of terms to get them to parse correctly or at all. One example is that hs-to-coq does not
understand the associativity of the function arrow when parsing: a -> b -> c will not parse, and needs to
be given as a -> (b -> c).

When providing a Theorem – or a Lemma, a Remark, a Fact, a Corollary, a Proposition, or an
Example – it must be immediately followed by Proof., some unparsed text (newlines are permitted), and
then the word Qed, Defined, or Admitted.

This is a multi-line edit and needs to be terminated by a period (as is natural when writing a coq_definition).

Examples:

add Data.Foldable Definition Data.Foldable.elem {f} `{(Foldable f)} {a} `{(GHC.
→˓Base.Eq_ a)} :
a -> (f a -> bool) :=
fun x xs => Data.Foldable.any (fun y => x GHC.Base.== y) xs.

add Data.Monoid Instance Unpeel_Last a : GHC.Prim.Unpeel (Last a) (option a) :=
GHC.Prim.Build_Unpeel _ _ getLast Mk_Last.

3.3.2 add type – inject a definition into the type component

Format:

add type module coq_definition

Effect: Add a Coq definition to the type component of a module. The definition can be as above, and need not be a
type definition. However, it is inserted before the midamble section and will appear grouped with the type and
class definitions.

3.3.3 import – inject an Import statement

Format:

import module module

Effect: Inject a Import statement into the Coq code, which makes the definitions from the given module available
unqualified.

When used to import the hs-to-coq base library, this makes the output look more like standard Haskell.

Note, however, that Coq’s module system lacks the import ... hiding construct so all definitions from
the module must be made available.

3.3. Adding Coq Commands 15
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Examples:

import module Prelude

3.4 Renaming and Rewriting

3.4.1 rename type – rename a type

Format:

rename type qualified_name = qualified_name

Effect: Change the name of a Haskell type, at both definition and use sites.

Examples:

rename type GHC.Types.[] = list
rename type GHC.Natural.Natural = Coq.Numbers.BinNums.N

3.4.2 rename value – rename a value

Format:

rename value qualified_name = qualified_name

Effect: Change the name of a Haskell value (function, data constructor), at both definition and use sites.

Note: When renaming a name in its definition, you should not change the module.

Examples:

rename value Data.Foldable.length = Coq.Lists.List.length # use Coq
→˓primitive
rename value GHC.Base.++ = Coq.Init.Datatypes.app # operators ok
rename value Data.Monoid.First = Data.Monoid.Mk_First # resolve
→˓punning

3.4.3 rename module – change a module name

Format:

rename module module module

Effect: Change the name of a Haskell module, affecting the filename of the generated Coq module.

Note: If two modules are renamed to the same name, they will be combined into a single joint module, as long as they
are processed during the same execution of hs-to-coq. This feature is useful to translate mutually recursive
modules.

Examples:

rename module Type MyType
rename module Data.Semigroup.Internal Data.SemigroupInternal

16 Chapter 3. Edit Files
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3.4.4 alias module – abbreviate a module name

Format:

alias module module module

Effect: Abbreviate a module name with an alias. All occurrences of the alias in the current edits file are expanded to
the original name. Aliases do not affect the generated Coq code.

Examples:

alias module Seq Data.Sequence.Internal
order Seq.Functor__Seq Seq.Applicative__Seq

# Equivalent to
order Data.Sequence.Internal.Functor__Seq Data.Sequence.Internal.Applicative_
→˓_Seq

3.4.5 rewrite – replace Haskell subexpressions

Format:

rewrite forall vars, expression = expression

Effect:

Pattern-matches a sub-expression and replaces it with the right-hand side after substituting all variables.

The pattern-matching is unhygienic: if you mention a variable x in the pattern but not in the list of
variables (vars), then the rewrite rule will only match if there is actually is a variable named x.

Examples:

## work around laziness
rewrite forall xs x, (GHC.List.zip xs (GHC.List.repeat x)) = (GHC.Base.map
→˓(fun y => pair y x) xs)
rewrite forall x, GHC.Magic.lazy x = x

## replace with Coq library function
rewrite forall x y, GHC.List.replicate x y = Coq.Lists.List.repeat y x

## skip debugging code
rewrite forall x, andb Util.debugIsOn x = false

## create dummy strings to ignore particular definitions
## note empty variable list
rewrite forall , Outputable.empty = (GHC.Base.hs_string__ "Outputable.empty")

3.4.6 redefine – override a Coq definition

Format:

redefine Coq_definition

Effect: Combines the skip and add edits.

You can use redefine Axiom ... to replace a type-level definition with an axiom; for value-level defini-
tions, please use axiomatize definition instead.
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Examples:

redefine Definition GHC.Base.map {A B :Type} (f : A -> B) xs := Coq.Lists.
→˓List.map f xs.

3.4.7 collapse let – if a definition is just a let-expression, inline it

Format:

collapse let qualified_name

Effect: If a converted definition is of the form

Definition outer := let inner := definition in inner.

then convert it to simply

Definition outer := definition.

Both outer and inner can have arguments; inner can have a type annotation, but it’s ignored.

Additionally, if definition is a non-mutual fixpoint fix f args := body, the recursive calls to f in
body are rewritten to direct calls to outer.

This is particularly important for mutual recursion: if inner is mutually recursive with another top-level func-
tion, then if outer has no arguments, it would otherwise appear not to be a function and would thus cause
conversion to fail, as Coq doesn’t support recursion through non-functions.

Examples:

collapse let CoreFVs.freeVars

3.5 Extra information

3.5.1 data kinds – Declare kinds of type arguments to Inductive datatypes

Format:

data kinds qualified_name Coq_types

Effect:

Haskell programmers rarely include kind signatures on inductive datatypes. This usually isn’t a problem,
but for higher-order parameters, some phantom type parameters, or poly-kinded type parameters, Coq
does not necessarily automatically infer the right types. In these cases, the information can be included in
an edit.

Examples:

# The edit file's Coq parser needs parentheses
data kinds Control.Applicative.WrappedArrow (Type -> (Type -> Type))

# Multiple kinds are separated with commas
data kinds Data.Functor.Reverse.Reverse (Type -> Type), Type
data kinds Data.Functor.Constant.Constant Type, Type
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3.5.2 polykinds – Declare polymorphic kind variables to Inductive datatypes

Format:

polykinds qualified_name name

Effect:

For Haskell programs written with the PolyKind extension, the user can provide the polymorphic kind
variables to help hs-to-coq to include those kind variables.

Examples:

polykinds Data.Monoid.Ap k

data kinds Data.Monoid.Ap (k -> Type), k

3.5.3 class kinds – Declare kinds of type arguments to type classes

Format:

class kinds qualified_name Coq_types

Effect:

Like data kinds, but for classes.

Examples:

class kinds Control.Arrow.Arrow (Type -> (Type -> Type))

3.5.4 delete unused type variables – Remove unused type variables from a
declaration

Format:

delete unused type variables qualified_name

Effect:

Don’t translate binders for any type variables that aren’t visibly used in the specified definition.

An explanation: sometimes, poly-kinded Haskell data types have extra invisible type parameters. For
instance, in Data.Functor.Const, we have the type

newtype Const a b = Const { getConst :: a }

which is secretly

newtype Const {k} (a :: Type) (b :: k) = Const { getConst :: a }

Often, such as here, this doesn’t show up in the translated Coq code; we get

Inductive Const a b : Type := Mk_Const (getConst : a) : Const a b.

(And, as in Haskell 2010, b is inferred to have kind Type.) Sometimes it does, in which case we can
fix it using data kinds. But either way, we still introduce spurious kind variables in the translation
sometimes. For example, the derived Eq instance for Const is translated to
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Program Instance Eq___Const {a} {k} {b} `{GHC.Base.Eq_ a}
: GHC.Base.Eq_ (Const a b : GHC.Prim.TYPE GHC.Types.LiftedRep) :=

fun _ k =>
k {| GHC.Base.op_zeze____ := Eq___Const_op_zeze__ ;

GHC.Base.op_zsze____ := Eq___Const_op_zsze__ |}.

The implicit argument {k} isn’t useful in the Coq code, and causes a type-checking failure when its type
cannot be determined. We can avoid this with

delete unused type variables Data.Functor.Const.Eq___Const

which will drop the {k} and leave the definition with just the {a} and {b} it needs:

Program Instance Eq___Const {a} {b} `{GHC.Base.Eq_ a}
: GHC.Base.Eq_ (Const a b : GHC.Prim.TYPE GHC.Types.LiftedRep) :=

fun _ k =>
k {| GHC.Base.op_zeze____ := Eq___Const_op_zeze__ ;

GHC.Base.op_zsze____ := Eq___Const_op_zsze__ |}.

Examples:

delete unused type variables Data.Functor.Const.Eq___Const

3.5.5 order – reorder output

Format:

order qualified_name . . .

Effect: hs-to-coq topologically sorts definitions so that they appear in dependency order. However, this sorting is
not always correct — type classes introduce implicit dependencies that are invisible to hs-to-coq. This edit
adds a new ordering constraint into the topological sort so that the output definitions appear in the order indicate
in this edit.

You can order more than two definitions at the same time:

order Foo.foo Foo.bar Foo.baz

is equivalent to

order Foo.foo Foo.bar
order Foo.bar Foo.baz

Examples:

order GHC.Base.Functor__arrow GHC.Base.Applicative__arrow_op_ztzg__ GHC.Base.
→˓Applicative__arrow GHC.Base.Monad__arrow_return_ GHC.Base.Monad__arrow GHC.Base.
→˓Alternative__arrow GHC.Base.MonadPlus__arrow

3.5.6 promote – promote a definition from the term level to the type level

Format:

promote qualified_name . . .
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Effect: hs-to-coq divides Haskell definitions into two “levels”: type-level and term-level. Type-level definitions al-
ways appear above term-level definitions in the Coq output. The promote edit moves a term-level definition to
the type level. It also recursively moves the transitive closure of all definitions on which the specified definition
depends.

Examples:

promote MyModule.foo

3.5.7 polyrec – Make a function polymorphic recursive

Format:

polyrec qualified_name

Effect: Translates a function which calls itself recursively at a different type.

Examples:

polyrec MyModule.foo

3.5.8 manual notation – Indicate presence of manual notation

Format:

manual notation name

Effect: If your preamble includes custom notation (usually for operators), you need to indicate this using this edit. See
Section Identifiers and Notation for more information about how hs-to-coq implements custom notation.

Examples:

manual notation GHC.Base

3.5.9 set type – Specify a type for a binding

Format:

set type qualified_name : Coq_type
set type qualified_name no type

Effect: Sets the type of the given definition to the given type, or omits the type if no type is specified.

Examples:

set type Example.int_to_int : Z -> Z
set type Example.inferred no type
in CoreUtils.stripTicksE set type go_b : (b * Core.Expr b) -> (b * Core.Expr b)

3.6 Termination edits

3.6.1 coinductive – use a coinductive instead of an inductive datatype

Format:

3.6. Termination edits 21



hs-to-coq Documentation, Release 0.1

coinductive qualified_name

Effect:

Examples:

3.6.2 termination – hints for termination proofs

Format:

termination qualified_name termination_argument

Examples:

termination MyModule.foo {struct arg_33__}
termination MyModule.foo {struct 3}
termination MyModule.foo {measure myExpr}
termination MyModule.foo {wf myRel myExpr}
termination MyModule.foo {corecursive}
termination MyModule.foo {deferred}

Effect:

By default, hs-to-coq translates recursive definitions using Coq’s fix operator, which requires that the
recursion is obviously structurally recursive. This is not always the right choice, and a termination
edit tells hs-to-coq to construct the recursive definition differently, where termination_argument is
one of the following:

• corecursive

This causes hs-to-coq to use cofix instead of fix.

• { struct qualified_name }

Coq’s fix operator usually determines the recursive argument automatically, but also supports the
user to specify it explicitly. This termination_argument is just passed along to Coq’s fix.

{ struct number }

This variant specifies the position of the recursive argument, counting from 1 and ignoring type
arguments. (Note: this variant is not actually valid Coq syntax, it is only allowed in edits files.)

• { measure expr }

{ measure expr ( relation ) }

{ wf relation expr }

With one of these forms for termination_argument, hs-to-coq uses Program Fixpoint
to declare the function, passing these termination arguments along. See the documentation of
Program Fixpoint for their precise meaning.

The expr is a Coq expression that mentions the parameters of the current functions. These often
have names generated by hs-to-coq – look at the generated Coq code to see what they are.

Program Fixpoint only supports top-level declaration. When these termination edits are ap-
plied to local definitions, hs-to-coq therefore uses the fixed-point operator wfFix1 defined in
GHC.Wf in our base library.

A side effect of these edits is that the definition (or the enclosing definition) is defines using
Program, which leaves proof obligations to the user. These should be discharged using the
obligations edit (see below).
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• deferred

This causes hs-to-coq to use the axiom deferredFix from the module GHC.DeferredFix
to translate the recursive definition. This defers the termination proof until the verification stage,
where the axiom deferredFix_eq_on is needed to learn anything about the recursive function,
and this axion requires an (extensional) termination proof.

See the file GHC/DeferredFix.v for more details.

Examples:

termination Memo.mkTrie corecursive

termination Memo.lookupTrie { measure arg_1__ (Coq.NArith.BinNat.N.lt) }
obligations Memo.lookupTrie solve_lookupTrie

termination Data.Set.Internal.link {measure (Nat.add (set_size arg_1__) (set_
→˓size arg_2__))}
obligations Data.Set.Internal.link termination_by_omega

in Data.IntSet.Internal.foldlBits termination go {measure (Coq.NArith.
→˓BinNat.N.to_nat arg_0__)}
obligations Data.IntSet.Internal.foldlBits BitTerminationProofs.termination_
→˓foldl

termination QuickSort.quicksort deferred

3.6.3 obligations – Proof obligations in Program mode

Format:

obligations qualified_name tactic

Effect: The specified definition is now defined using Program, and is followed by

Solve Obligations with (tactic).

with the specified tactic.

This is most commonly used with with the termination hint, but can be useful on its own: For example,
Program mode automatically applies or unwraps sigma types, which may leave proof obligations.

The { measure ... } termination argument of the termination edit always causes Program to be
used. If no obligations edit is specified, then all obligations are solved with Admit Obligations..

The tactic is drawn from a very simple subset of Ltac, featuring identifiers, identifiers with @, application,
numbers, underscore, ;, and ||. Anything richer should go in the preamble or midamble.

3.7 Mutual recursion edits

3.7.1 inline mutual – Move mutually-recursive functions into let-bindings

Format:

inline mutual qualified_name
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Effect: The specified definition must be part of a mutually recursive set of definitions. Instead of being defined as
another mutual fixpoint, it will be inlined into each of the other mutual fixpoints that needs it with a let-
binding; additionally, a top-level Coq definition is generated for each let-bound function that simply calls into
the predefined recursive functions.

This facility is useful when translating groups of mutually recursive functions that contain “preprocessing” or
“postprocessing” functions, where the group is otherwise structurally recursive. These functions are not “truly”
mutual recursive, as they just hand along values of the type being recursed, and so if Coq could only see through
them, everything would work fine. And indeed, as let-bindings, Coq can see through them.

As an example, consider the following pair of mutually recursive data types, which represent a Forest of
nonempty Trees. Each Branch of a Tree holds an extra boolean flag, which we can extract with isOK. In
Haskell:

data Forest a = Empty
| WithTree (Tree a) (Forest a)

data Tree a = Branch Bool a (Forest a)

isOK :: Tree a -> Bool
isOK (Branch ok _ _) = ok

And in cleaned-up Coq:

Inductive Forest a : Type
:= Empty : Forest a
| WithTree : Tree a -> Forest a -> Forest a

with Tree a : Type
:= Branch : bool -> a -> Forest a -> Tree a.

Arguments Empty {_}.
Arguments WithTree {_} _ _.
Arguments Branch {_} _ _ _.

Definition isOK {a} : Tree a -> bool :=
fun '(Branch ok _ _) => ok.

Now we can define a pair of mapping functions that only apply a function inside subtrees where the boolean flag
is true. The Haskell code is simple:

mapForest :: (a -> a) -> Forest a -> Forest a
mapForest f Empty = Empty
mapForest f (WithTree t ts) = WithTree (mapTree f t) (mapForest f ts)

mapTree :: (a -> a) -> Tree a -> Tree a
mapTree f t | isOK t = mapOKTree f t

| otherwise = t

mapOKTree :: (a -> a) -> Tree a -> Tree a
mapOKTree f (Branch ok x ts) = Branch ok (f x) (mapForest f ts)

However, the (cleaned-up) Coq translation fails:

Fail Fixpoint mapForest {a} (f : a -> a) (ts0 : Forest a) {struct ts0} : Forest a
→˓:=
match ts0 with
| Empty => Empty
| WithTree t ts => WithTree (mapTree f t) (mapForest f ts)

(continues on next page)
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(continued from previous page)

end
with mapTree {a} (f : a -> a) (t : Tree a) {struct t} : Tree a :=
if isOK t
then mapOKTree f t
else t

with mapOKTree {a} (f : a -> a) (t : Tree a) {struct t} : Tree a :=
match t with
| Branch ok x ts => Branch ok (f x) (mapForest f ts)
end.

The issue is that mapTree calls mapOKTree on the same term, and not a subterm. But this just a preprocess-
ing/postprocessing split – there’s nothing actually recursive going on.

But with

inline mutual mapOKTree

we instead get working Coq code (again, cleaned up):

Fixpoint mapForest {a} (f : a -> a) (ts0 : Forest a) {struct ts0} : Forest a :=
match ts0 with
| Empty => Empty
| WithTree t ts => WithTree (mapTree f t) (mapForest f ts)
end

with mapTree {a} (f : a -> a) (t : Tree a) {struct t} : Tree a :=
let mapOKTree {a} (f : a -> a) (t : Tree a) : Tree a :=

match t with
| Branch ok x ts => Branch ok (f x) (mapForest f ts)
end in

if isOK t
then mapOKTree f t
else t.

Definition mapOKTree {a} (f : a -> a) (t : Tree a) : Tree a :=
match t with
| Branch ok x ts => Branch ok (f x) (mapForest f ts)
end.

This is the idea. However, to be completely fair, we never produce Fixpoint commands; both in the failing
case and in the successful case, we generate fix terms. In this example, this looks like (reindented)

Definition mapForest {a} : (a -> a) -> Forest a -> Forest a :=
fix mapTree f t :=
let mapOKTree arg_0__ arg_1__ :=

match arg_0__, arg_1__ with
| f, Branch ok x ts => Branch ok (f x) (mapForest f ts)
end in

if isOK t : bool
then mapOKTree f t
else t

with mapForest arg_0__ arg_1__ :=
match arg_0__, arg_1__ with
| f, Empty => Empty
| f, WithTree t ts => WithTree (mapTree f t) (mapForest f ts)
end

for mapForest.

(continues on next page)
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Definition mapOKTree {a} : (a -> a) -> Tree a -> Tree a :=
fun arg_0__ arg_1__ =>
match arg_0__, arg_1__ with
| f, Branch ok x ts => Branch ok (f x) (mapForest f ts)
end.

Definition mapTree {a} : (a -> a) -> Tree a -> Tree a :=
fix mapTree f t :=
let mapOKTree arg_0__ arg_1__ :=

match arg_0__, arg_1__ with
| f, Branch ok x ts => Branch ok (f x) (mapForest f ts)
end in

if isOK t : bool
then mapOKTree f t
else t

with mapForest arg_0__ arg_1__ :=
match arg_0__, arg_1__ with
| f, Empty => Empty
| f, WithTree t ts => WithTree (mapTree f t) (mapForest f ts)
end

for mapTree.

3.8 Invariant Edit

3.8.1 add invariant – Specify an invariant that a datatype should satisfy

NOTE: Currently only applies to datatypes with a single constructor!

Format:

add invariant {

module = module,

qid = qualified_name,

tyVars = [ type_variables ],

constructor = qualified_name,

useSigmaType = [ names ],

invariant = coq_definition

}

Note: Currently, you cannot leave any of the parameters out, and they must appear in the order above.

Meaning of each parameter:

• module denotes the name of the module to which the invariant applies.

• qid is a qualified name that denotes the type to which the invariant applies.

• tyVars is a list of the type variable arguments of the type passed to qid. For example, if the type passed
to qid was declared in Haskell as

data Foo a b where
...
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then tyVars should be set to [a, b].

• constructor is a qualified name referring to the constructor of the type to which the invariant applies.

• useSigmaType is a list of unqualified names of the definitions that should preserve the invariant. The
Program keyword will be added in front of these definitions, so that Coq generates the needed proof
obligations (see below under “Effect”). You must supply the proofs (see the edits file of the extended
example below).

• invariant is a Coq definition encoding the invariant. Note that the type of the definition passed to
invariant should be a function type, where the argument type is the name of the type passed to qid,
prefixed by “Raw”, and the return type is Type. For instance, if the type passed to qid is MyModule.
Foo, the type of the definition passed to invariant should be MyModule.RawFoo -> Type.

Effect:

Inserts Coq code to support a datatype invariant for the type passed as qid, which we will henceforth refer to
here as <ty_qid>.

In particular, creates a sigma type that pairs a value of type <ty_qid> with a proof that it satisfies the invariant.
In the translated Coq file, the type <ty_qid> will now denote this sigma type. The original type (which was
denoted by <ty_qid>) will be renamed by prefixing “Raw” in front of the original unqualified name (e.g.
MyModule.Foo becomes MyModule.RawFoo).

Also creates notation that acts as a constructor for this new sigma type. Internally, this notation uses existT.
Note that the last argument to existT is the proof part of the sigma type. Thus, wherever this notation is
used to construct a value of the sigma type, the corresponding proof must be provided. Coq’s Program mode
automatically unwarps sigma types and generates the necessary proof obligations (see below).

The original constructor will be renamed by adding the suffix _Raw.

The definitions specified in useSigmaType will use the sigma type instead of the original type. Thus, we
need a way to provide the proof part of the sigma type. To this end, hs-to-coq will re-define these definitions
using the Program keyword. As a result, when Coq encounters these definitions, it will enter Program mode.
Program mode automatically applies or unwraps sigma types, which may generate proof obligations for the
user.

You MUST use an obligations edit to supply the proofs; see the example below.

Example:

Suppose we create a Haskell module representing a counter, as shown below. We say that a Counter is valid if
its internal integer is non-negative.

Below is the Haskell code:

module Counter(Counter, zeroCounter, inc, dec, isZero) where

data Counter = MkC Int
deriving Show

zeroCounter :: Counter
zeroCounter = MkC 0

inc :: Counter -> Counter
inc (MkC x) = MkC (x+1)

dec :: Counter -> Counter
dec (MkC x) = if x > 0 then MkC (x - 1) else MkC 0

isZero :: Counter -> Bool
(continues on next page)
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isZero (MkC x) = x == 0

valid :: Counter -> Bool
valid (MkC x) = x >= 0

Notice that any Counter created using the public API has the property that it is non-negative: zeroCounter
is non-negative, and given a non-negative Counter, the public functions defined on Counter type preserve
the fact that the counter is non-negative.

In Coq, we can formalize the invariant that the counter is non-negative with the help of an invariant edit.

Here is the edits file:

add invariant {
module = Counter,
qid = Counter.Counter,
tyVars = [],
constructor = MkC,
useSigmaType = [Counter.zeroCounter, Counter.inc, Counter.dec],
invariant = Definition Counter.NonNegInv : (Counter.RawCounter -> Type)

:= fun x => valid x = true.
}

promote Counter.valid # promote valid from the term-level to the type-level

obligations Counter.zeroCounter admit
obligations Counter.inc admit
obligations Counter.dec admit

Note that we have used a promote edit to lift the definition of valid from the term level to the type level.
We need to do this because NonNegInv, which is in the type level, references valid. We have also provided
(trivial) proof obligations for the definitions in the list passed to useSigmaType.

Here is the Coq output (relevant parts, cleaned up and with added comments):

(* Converted type declarations: *)

(* The original Counter datatype, now renamed to RawCounter.
Notice that the constructor MkC has been renamed to MkC_Raw. *)

Inductive RawCounter : Type := | MkC_Raw : GHC.Num.Int -> RawCounter.

(* The definition of validity. Note that this came directly
from the Haskell source. It is not suitable as an invariant,
because the return type is not Type. *)

Definition valid : RawCounter -> bool :=
fun '(MkC_Raw x) => x GHC.Base.>= #0.

(* The invariant. Notice the input has type RawCounter. *)
Definition NonNegInv : RawCounter -> Type :=
fun x => valid x = true.

(* The sigma type. *)
Definition Counter : Type :=
{ x : RawCounter & NonNegInv x }.

(* The "constructor" for the sigma type. The last argument
to @existT is the proof part of the sigma type. *)

(continues on next page)
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Local Notation MkC y :=
(@existT _ _ (MkC_Raw y) _).

(* Converted value declarations: *)

Program Definition zeroCounter : Counter :=
MkC #0.

Admit Obligations.

Program Definition inc : Counter -> Counter :=
fun '(MkC x) => MkC (x GHC.Num.+ #1).

Admit Obligations.

Program Definition dec : Counter -> Counter :=
fun '(MkC x) =>
if Bool.Sumbool.sumbool_of_bool (x GHC.Base.> #0)
then MkC (x GHC.Num.- #1)
else MkC #0.

Admit Obligations.

Definition isZero : RawCounter -> bool :=
fun '(MkC_Raw x) => x GHC.Base.== #0.

Notice that some renaming has occurred: Counter has been renamed to RawCounter and MkC has been renamed
MkC_Raw.

Note also that valid has been promoted to the type level. This is necessary, because NonNegInv refers to valid.

Finally, note the use of Program before the definitions of zeroCounter, inc, and dec, and observe that these
definitions use Counter and MkC, while isZero uses RawCounter and MkC_Raw.

3.9 Meta-edits

3.9.1 in edit - restrict scope of an edit to a single definition

Format:

in qualified_name edit

Effect:

This is a meta-edit: The given edit is only applied during the translation of the given definition. This is
most useful to rename or rewrite only within a specific function, or to give termination arguments to local
functions.

While all edits are allowed, not all edits are useful when localized.

Examples:

in SrcLoc.Ord__RealSrcLoc_op_zl__ rewrite forall, SrcLoc.Ord__RealSrcLoc_compare
→˓= GHC.Base.compare
in Util.exactLog2 termination pow2 deferred
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3.9.2 except in edit - exclude definitions from an edit

Format:

except in qualified_names edit

Effect:

This is essentially the opposite of an in edit. The given edit is applied as normal, except during the
translation of the given definition(s). This is most useful to rename or rewrite a definition everywhere
except within one or more functions. In addition, it can be used when there is a local function with the
same name in multiple definitions, in order to give termination arguments to all occurrences of that local
function except those in the specified definitions.

As with in edits, while all edits are allowed, for many edits it doesn’t make sense to apply except in.

Examples:

except in SrcLoc.Ord__RealSrcLoc_op_zl__ rewrite forall, SrcLoc.Ord__RealSrcLoc_
→˓compare = GHC.Base.compare
except in Util.exactLog2 termination pow2 deferred
except in ModuleName.def_1 skip case pattern _

# Multiple qualified names are separated with commas
except in ModuleName.def_1, ModuleName.def_2 rename type GHC.Types.[] = list

Caveats:

This edit does not currently work with data type definitions.

3.10 Deprecated edits

3.10.1 add scope

Format:

add scope scope for place qualified_name

Effect:

Examples:

3.10.2 type synonym

Format:

type synonym name :-> name

Effect:

Examples:
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CHAPTER 4

Identifiers and Notation

Most Haskell names can be reused as Coq names (fully qualified). However, due to differences in parsing and key-
words, hs-to-coq must sometimes modify the generated identifiers.

4.1 Coq keywords

The following Coq keywords are automatically translated with an extra _ following them:

Set Type Prop fun fix forall return mod match as
cons pair nil for is with left right exists

4.2 Operators

Coq does not allow the definition of identifiers composed with punctuation.

To name these identifiers, hs-to-coq uses GHC’s z-encoding to give textual names to operators. These textual
operator names are preceded by op_ and followed by two underscores.

For example, the Haskell identifier == is translated to the Coq identifier GHC.Base.op_zeze__

4.3 Notation

Nevertheless, we want users to be able to use the operator syntax, (e.g. ==) in the output. Therefore, hs-to-coq
defines appropriate Coq syntax for it:

Notation "'_==_'" := (op_zeze__).
Infix "==" := (op_zeze__) (no associativity, at level 70).
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This works fine within the given module (here: GHC.Base), and within every module that imports GHC.Base. But
in general, hs-to-coq does not import modules (it only requires them, using Require GHC.Base.), so the
notation is not visible.

Therefore, the translated module will contain a Notations submodule at the end:

Module Notations.
Infix "GHC.Base.==" := (op_zeze__) (no associativity, at level 70).
Notation "'_GHC.Base.==_'" := (op_zeze__).
End Notations.

When a module needs to be required, and any of the imported names look like operators, then hs-to-coq imports
the the contained Notations module:

Require GHC.Base.
Import GHC.Base.Notation.

This brings the “qualified operators” into scope.

In manually written modules (e.g. those containing the proofs), the user can choose to follow that example, and use
all names and operators qualified, or they can Require Import GHC.Base, and use all names and operators
unqualified, and ignore the Notations module.

In the rare case that you need to define operators in the preamble, then you have to manually add the Notations
as shown here. You put the definition of the syntax for the qualified in a nested module ManualNotation and
use the manual notation edit to make hs-to-coq include the ManualNotation module in the generated
Notation module.

4.4 String Notation

Since Coq 8.9, string syntax notations are now available only when using Import of libraries and not merely
Require. The Coq files generated by hs-to-coq will no longer offer these notations by default, either, but can
be enabled by importing GHC.Base.Notation, GHC.Err, or the standard Coq libraries. hs-to-coq cunrrently
cannot automatically import these notations even if the translated code uses them.
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CHAPTER 5

Interface files

When translating a module Foo that uses a type class or algebraic data type from another file Bar, then hs-to-coq needs
to know some information about these types. Therefore, when it creates Bar.v, it also writes an interface file Bar.h2ci.
This interface file is loaded on demand during the translation of Foo, when and if it needs the information about Bar.

Some notes about interface file:

• You need to pass –iface-dir foo/ to make hs-to-coq search for interface files in foo/. This flag can be used
multiple times. Usually, you will at least passt –iface-dir path/to/base –iface-dir output/ where output/ is the
argument to -o.

• When it cannot find an interface file, hs-to-coq complains loudly (but still produces output). It is expected that
the user will fix the problem, either by processing the dependent-upon file first, or by skipping the offending
declarations.

• hs-to-coq can help with figuring out the right dependency order. If you pass –dependency-dir deps to it, it will
create a file deps/Foo.mk after processing module Foo. This will, in Makefile syntax, list all read interface files
as dependencies of Foo.v, ensuring that from now on all files are built in the right order.

• Skipping instances prevents hs-to-coq from trying to load the interface files of the class’es module.

• Coq types as well as information about the type classes Eq and Ord are hard-coded in
src/lib/HsToCoq/ConvertHaskell/BuiltIn.hs.

• When you have a manual file that defines types or type classes, you may have to create a faux interface files.
Simply create a text file that is an valid empty yaml file (e.g. ‘{}’).
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CHAPTER 6

Indices and tables

• genindex

• modindex

• search
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